WMML
Meet \#4
Feb. 1, 2022

Arithmetic and Number Theory
18.75 marps

1. \qquad how many marps are worth the same as 10 morbs?

$$
\begin{aligned}
& 10 \text { morbs } \cdot \frac{3 \text { meebs }}{4 \text { morbs }}=7.5 \text { meebs } \\
& 7.5 \text { meebs } \cdot \frac{5 \text { marps }}{2 \text { meebs }}=18.75 \mathrm{marps}
\end{aligned}
$$

\$7,031.25
2. \qquad

7
3. \qquad
3) Find the units digit of $7^{42}+42^{7}$.
7^{1} ends in $1,7^{2}$ ends in $9,7^{3}$ ends in $3,7^{4}$ ends in 1 , then it repeats. So 7^{42} ends in 9 .
42^{7} has the same units digit as $2^{7}=128$, so it ends in an 8.
$9+8=17$, so $7^{42}+42^{7}$ ends in a 7.

WMML
Name \qquad

Algebra 1

1) There are 16 coins in a piggy bank. If the coins are all nickels and dimes and they total $\$ 1.05$, how many nickels are there?

$$
\begin{gathered}
5 n+10(16-n)=105 \\
-5 n+160=105 \\
n=11
\end{gathered}
$$

1. \qquad
$(9,1)$
2) Find all (x, y) such that $2 \sqrt{x}+4 \sqrt{y}=10$ and $2 \sqrt{x}-3 \sqrt{y}=3$.

Subtracting the second equation from the first gives $7 \sqrt{y}=7$, or

$$
\sqrt{y}=1, \text { so } y=1
$$

$$
2 \sqrt{x}+4(1)=10, \text { so } \sqrt{x}=3 \text { and } x=9 .
$$

3) Simplify the following expression:

$$
\begin{gathered}
\left(2+\sqrt{2}+\frac{1}{2+\sqrt{2}}+\frac{1}{\sqrt{2}-2}\right)^{2} \\
\left(2+\sqrt{2}+\frac{1}{2+\sqrt{2}} \cdot \frac{2-\sqrt{2}}{2-\sqrt{2}}+\frac{1}{\sqrt{2}-2} \frac{-\sqrt{2}-2}{-\sqrt{2}-2}\right)^{2} \\
=\left(2+\sqrt{2}+\frac{2-\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}\right)^{2}=2^{2}=4
\end{gathered}
$$

4
3. \qquad

WMML
Meet \#4
Feb. 1, 2022

Geometry

) In the figure, if $\overparen{A B}=60^{\circ}$ and $\overparen{D E}=40^{\circ}$, then what is $\angle A C D$?

$\angle A C B=\frac{60^{\circ}+40^{\circ}}{2}=50^{\circ}$ $\angle A C D=180^{\circ}-50^{\circ}=130^{\circ}$

1. \qquad
Name \qquad

School \qquad

2) A 25 -foot ladder is placed against a vertical wall. The foot of the ladder is 7 feet from the base of the wall. If the top of the ladder slips 4 feet, then how far will the foot slide?

The top of the ladder is $\sqrt{25^{2}-7^{2}}=\sqrt{576}=24$ feet up the wall. After it slides, it is 20 feet up the wall.

$$
\sqrt{25^{2}-20^{2}}=\sqrt{225}=15
$$ measure of angle B is twice that of angle D, and the measures of segments $C B$ and $A B$ are a and b respectively. Find $C D$ in terms of a and b.

$$
\begin{aligned}
& \angle A D E=\angle B E C=\angle E B C \text {, so } \\
& E C=B C=a \\
& D E=A B=b \\
& C D=C E+E D=a+b
\end{aligned}
$$

$a+b$
3. \qquad
2. \qquad

WMML \qquad

Algebra 2

\qquad

1) How many integers satisfy $|x|+1 \geq 3$ and $|x-1|<3$?
1. \qquad

First inequality: $|x| \geq 2$ so $x \leq-2$ or $x \geq 2$.
Second: $-3<x-1<3$ so $-2<x<4$
The only integers that satisfy both are 2 and 3 , so there are 2 solutions.
2) Find the sum
$\frac{1}{3+2 \sqrt{2}}+\frac{1}{2 \sqrt{2}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{5}}+\frac{1}{\sqrt{5}+2}+\frac{1}{2+\sqrt{3}}$

$$
3-\sqrt{3}
$$

2. \qquad
$\frac{1}{\sqrt{9}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{3}}$
Rationalizing each denominator gives the expression

$$
\begin{aligned}
\sqrt{9}-\sqrt{8}+\sqrt{8}-\sqrt{7}+\sqrt{7}-\sqrt{6} & +\sqrt{6}-\sqrt{5}+\sqrt{5}-\sqrt{4}+\sqrt{4}-\sqrt{3} \\
& =\sqrt{9}-\sqrt{3}=3-\sqrt{3}
\end{aligned}
$$

322

3) Find $x^{6}+\frac{1}{x^{6}}$ if $x+\frac{1}{x}=3$.
$x^{2}+\frac{1}{x^{2}}+2=\left(x+\frac{1}{x}\right)^{2}=3^{2}=9$, so $x^{2}+\frac{1}{x^{2}}=7$.
$\left(x^{2}+\frac{1}{x^{2}}\right)^{3}=x^{6}+3\left(x^{2}\right)^{2}\left(\frac{1}{x^{2}}\right)+3\left(x^{2}\right)\left(\frac{1}{x^{2}}\right)^{2}+\frac{1}{x^{6}}$
$7^{3}=x^{6}+\frac{1}{x^{6}}+3\left(x^{2}+\frac{1}{x^{2}}\right)$
$343=x^{6}+\frac{1}{x^{6}}+3(7)$ so $x^{6}+\frac{1}{x^{6}}=343-21=322$

WMML
Meet \#4
Feb. 1, 2022

Trigonometry and Complex Numbers
-2

1) Find the value of $\sec \left(1920^{\circ}\right)$.

$$
\begin{gathered}
1920=120+360(5) \\
\sec \left(1920^{\circ}\right)=\sec \left(120^{\circ}\right)=\frac{1}{\cos \left(120^{\circ}\right)}=\frac{1}{-1 / 2}=-2
\end{gathered}
$$

2) What is the radius of a circle that is inscribed in a triangle with
2. \qquad side lengths 8,15 and 17 ?

$$
\begin{gathered}
r=\frac{\text { area of triangle }}{\text { semiperimeter of triangle }} \\
\text { area }=\frac{1}{2}(8)(15)=60\left(\text { since } 8^{2}+15^{2}=17^{2}\right) \\
\text { semiperimeter }=\frac{8+15+17}{2}=20 \\
\qquad r=\frac{60}{20}=3
\end{gathered}
$$

3) If $f(z)=\frac{z+1}{z-1}$, then find $f^{2022}(2+i)$.

$$
2+i
$$

3. \qquad
$f(2+i)=\frac{2+i+1}{2+i-1}=\frac{3+i}{1+i} \cdot \frac{1-i}{1-i}=\frac{4-2 i}{2}=2-i$
$f^{2}(2+i)=f(2-i)=\frac{2-i+1}{2-i-1}=\frac{3-i}{1-i} \cdot \frac{1+i}{1+i}=\frac{4+2 i}{2}=2+i$
It keeps flipping back and forth, and $f^{2022}(2+i)=2+i$.

WMML
Name \qquad

Precalculus

School \qquad

1) Find the product of all roots of the polynomial

$$
x^{3}+x^{2}-17 x+15
$$

$x^{3}+x^{2}-17 x+15=(x-1)(x-3)(x+5)$
$1(3)(-5)=-15$
2) Find the equations of all asymptotes for the equation

$$
\frac{(x+1)^{2}}{4}-\frac{(y-2)^{2}}{9}=1
$$

Center is at $(-1,2), a=2$, and $b=3$.
The asymptotes are defined by $y-2= \pm \frac{3}{2}(x+1)$.

$$
\frac{14 \sqrt{13}}{65}
$$

3) Find the cosine of the angle between the vectors $\left(\begin{array}{lll}3 & 4 & 5\end{array}\right)$

$$
y-2= \pm \frac{3}{2}(x+1)
$$

2. \qquad
and ($\left.-1 \begin{array}{lll}-1 & 4 & 3\end{array}\right)$.

$$
\begin{gathered}
\cos (\theta)=\frac{\left(\begin{array}{ll}
3 & 4
\end{array}\right) \cdot\left(\begin{array}{lll}
-1 & 4 & 3
\end{array}\right)}{\left\|\left(\begin{array}{lll}
3 & 4 & 5
\end{array}\right)| | \cdot\right\|\left(\begin{array}{ll}
-1 & 4
\end{array}\right)| |} \\
=\frac{3(-1)+4(4)+5(3)}{\sqrt{3^{2}+4^{2}+5^{2}} \cdot \sqrt{(-1)^{2}+4^{2}+3^{2}}}=\frac{28}{\sqrt{50} \cdot \sqrt{26}} \\
=\frac{28}{10 \sqrt{13}}=\frac{14 \sqrt{13}}{65}
\end{gathered}
$$

3. \qquad

WMML
Meet \#4
Feb. 1, 2022

Team Round

1. If $a \sharp b=a^{b}+b$, determine the value of $(4 \sharp 5)-(5 \sharp 4)$.

$$
\begin{aligned}
\left(4^{5}+5\right) & -\left(5^{4}+4\right) \\
& =(1024+5)-(625+4) \\
& =1029-629=400
\end{aligned}
$$

2. If $f(x)=5 x-2, g(x)=a x+b$, and $f(g(x))=g(f(x))$, find an expression for b in terms of a.

$$
\begin{aligned}
5(a x+b)-2 & =a(5 x-2)+b \\
5 a x+5 b-2 & =5 a x-2 a+b \\
4 b & =-2 a+2 \\
b & =\frac{-a}{2}+\frac{1}{2}
\end{aligned}
$$

3. How many cubes, each 3 inches on an edge, are needed to make a volume equal to that of a rectangular solid whose dimensions are 2 feet by 2 feet by 3 feet?

$$
\begin{aligned}
24 \times 24 \times 36 & =20,736 \\
3 \times 3 \times 3 & =27 \\
20,736 \div 27 & =768
\end{aligned}
$$

$$
b=\frac{-a}{2}+\frac{1}{2}
$$

400

1. \qquad
2. \qquad

768
3. \qquad

WMML
Name \qquad
4. Let x be an integer such that $-20 \leq x \leq 20$. If x is chosen at random, determine the probability that it will be a solution to both $|x-5| \geq 5$ and $x^{2} \leq 196$

There are 41 integers on the interval $-20 \leq x \leq 20$.
Since $x^{2} \leq 196$, we have that $-14 \leq x \leq 14$.
For $|x-5| \geq 5$, we have that $x-5 \geq 5(x \geq 10)$ or $x-5 \leq-5(x \leq 0)$.

Both are true when
$x=-14,-13,-12,-11,-10,-9,-8,-7,-6,-5$, $-4,-3,-2,-1,0,10,11,12,13$, and 14

School \qquad
4. \qquad
$\frac{20}{41}$

