WMML Name _____ Meet #4 Feb. 1, 2022 School _____ Arithmetic and Number Theory 18.75 marps 1) If 4 morbs are worth 3 meebs and 2 meebs are worth 5 marps, 1. how many marps are worth the same as 10 morbs? $10 \text{ morbs} \cdot \frac{3 \text{ meebs}}{4 \text{ morbs}} = 7.5 \text{ meebs}$ 7.5 meebs $\cdot \frac{5 \text{ marps}}{2 \text{ meebs}} = 18.75 \text{ marps}$ \$7,031.25 2) The price of a car is originally \$10,000. If the price decreased by 2._____ 25%, then increased by 25%, and finally decreased by 25% again. What is the final price of the car? 10000(0.75) = 7500\$7500(1.25) = \$93759375(0.75) = 7031.257 3._____ 3) Find the units digit of $7^{42} + 42^7$.

 7^1 ends in 1, 7^2 ends in 9, 7^3 ends in 3, 7^4 ends in 1, then it repeats. So 7^{42} ends in 9.

 42^7 has the same units digit as $2^7 = 128$, so it ends in an 8.

9 + 8 = 17, so $7^{42} + 42^7$ ends in a 7.

WMML Name _____ Meet #4 School _____ Feb. 1, 2022 Algebra 1 11 1) There are 16 coins in a piggy bank. If the coins are all nickels and 1._____ dimes and they total \$1.05, how many nickels are there? 5n + 10(16 - n) = 105-5n + 160 = 105n = 11(9,1) 2) Find all (x, y) such that $2\sqrt{x} + 4\sqrt{y} = 10$ and 2._____ $2\sqrt{x} - 3\sqrt{y} = 3.$

Subtracting the second equation from the first gives $7\sqrt{y}=7$, or

$$\sqrt{y} = 1$$
, so $y = 1$.
 $2\sqrt{x} + 4(1) = 10$, so $\sqrt{x} = 3$ and $x = 9$.

$$\left(2 + \sqrt{2} + \frac{1}{2 + \sqrt{2}} + \frac{1}{\sqrt{2} - 2}\right)^2$$

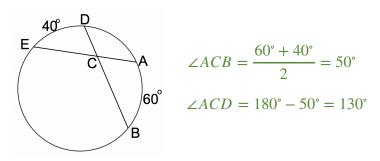
4

3._____

$$\left(2+\sqrt{2}+\frac{1}{2+\sqrt{2}}\cdot\frac{2-\sqrt{2}}{2-\sqrt{2}}+\frac{1}{\sqrt{2}-2}\frac{-\sqrt{2}-2}{-\sqrt{2}-2}\right)^2$$
$$=\left(2+\sqrt{2}+\frac{2-\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}\right)^2=2^2=4$$

Geometry

1) In the figure, if $AB = 60^{\circ}$ and $DE = 40^{\circ}$, then what is $\angle ACD$?



2) A 25-foot ladder is placed against a vertical wall. The foot of the ladder is 7 feet from the base of the wall. If the top of the ladder slips 4 feet, then how far will the foot slide?

The top of the ladder is $\sqrt{25^2 - 7^2} = \sqrt{576} = 24$ feet up the wall. After it slides, it is 20 feet up the wall.

$$\sqrt{25^2 - 20^2} = \sqrt{225} = 15$$

130

Name _____

School

1.

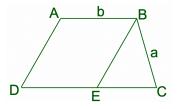
15

2.

3._

a+b

3) In the figure below, segments AB and CD are parallel, the measure of angle B is twice that of angle D, and the measures of segments CB and AB are a and b respectively. Find CD in terms of a and b.



$$\angle ADE = \angle BEC = \angle EBC$$
, so
 $EC = BC = a$
 $DE = AB = b$
 $CD = CE + ED = a + b$

Algebra 2

1) How many integers satisfy $|x| + 1 \ge 3$ and |x - 1| < 3?

First inequality: $|x| \ge 2$ so $x \le -2$ or $x \ge 2$.

Second: -3 < x - 1 < 3 so -2 < x < 4

The only integers that satisfy both are 2 and 3, so there are 2 solutions.

2) Find the sum

 $\frac{1}{3+2\sqrt{2}} + \frac{1}{2\sqrt{2}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{5}} + \frac{1}{\sqrt{5}+2} + \frac{1}{2+\sqrt{3}}$

$$\frac{1}{\sqrt{9} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{7}} + \frac{1}{\sqrt{7} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{3}}$$

Rationalizing each denominator gives the expression

$$\sqrt{9} - \sqrt{8} + \sqrt{8} - \sqrt{7} + \sqrt{7} - \sqrt{6} + \sqrt{6} - \sqrt{5} + \sqrt{5} - \sqrt{4} + \sqrt{4} - \sqrt{3}$$
$$= \sqrt{9} - \sqrt{3} = 3 - \sqrt{3}$$

3) Find $x^{6} + \frac{1}{x^{6}}$ if $x + \frac{1}{x} = 3$. $x^{2} + \frac{1}{x^{2}} + 2 = \left(x + \frac{1}{x}\right)^{2} = 3^{2} = 9$, so $x^{2} + \frac{1}{x^{2}} = 7$. $\left(x^{2} + \frac{1}{x^{2}}\right)^{3} = x^{6} + 3(x^{2})^{2}\left(\frac{1}{x^{2}}\right) + 3(x^{2})\left(\frac{1}{x^{2}}\right)^{2} + \frac{1}{x^{6}}$ $7^{3} = x^{6} + \frac{1}{x^{6}} + 3\left(x^{2} + \frac{1}{x^{2}}\right)$

$$343 = x^6 + \frac{1}{x^6} + 3(7)$$
 so $x^6 + \frac{1}{x^6} = 343 - 21 = 322$

Name	
School	
	2
1.	

 $3 - \sqrt{3}$

322

3.		

WMML Name _____ Meet #4 School _____ Feb. 1, 2022 **Trigonometry and Complex Numbers** -2 1) Find the value of $sec(1920^{\circ})$. 1._____ 1920 = 120 + 360(5) $\sec(1920^\circ) = \sec(120^\circ) = \frac{1}{\cos(120^\circ)} = \frac{1}{-1/2} = -2$ 3 2.____ 2) What is the radius of a circle that is inscribed in a triangle with side lengths 8, 15 and 17? $r = \frac{\text{area of triangle}}{\text{semiperimeter of triangle}}$ area = $\frac{1}{2}(8)(15) = 60$ (since $8^2 + 15^2 = 17^2$) semiperimeter = $\frac{8+15+17}{2} = 20$ $r = \frac{60}{20} = 3$ 2 + *i* 3) If $f(z) = \frac{z+1}{z-1}$, then find $f^{2022}(2+i)$. 3._____ $f(2+i) = \frac{2+i+1}{2+i-1} = \frac{3+i}{1+i} \cdot \frac{1-i}{1-i} = \frac{4-2i}{2} = 2-i$ $f^{2}(2+i) = f(2-i) = \frac{2-i+1}{2-i-1} = \frac{3-i}{1-i} \cdot \frac{1+i}{1+i} = \frac{4+2i}{2} = 2+i$

It keeps flipping back and forth, and $f^{2022}(2+i) = 2+i$.

Precalculus

1) Find the product of all roots of the polynomial $x^3 + x^2 - 17x + 15.$

$$x^{3} + x^{2} - 17x + 15 = (x - 1)(x - 3)(x + 5)$$
$$1(3)(-5) = -15$$

2) Find the equations of all asymptotes for the equation

$$\frac{(x+1)^2}{4} - \frac{(y-2)^2}{9} = 1.$$

Center is at (-1,2), a = 2, and b = 3.

The asymptotes are defined by $y - 2 = \pm \frac{3}{2}(x + 1)$.

Name	
School	
	-15

$$y-2 = \pm \frac{3}{2}(x+1)$$

3.____

3) Find the cosine of the angle between the vectors $(3 \ 4 \ 5)$ and $(-1 \ 4 \ 3)$.

$$\cos(\theta) = \frac{(3 \ 4 \ 5) \cdot (-1 \ 4 \ 3)}{||(3 \ 4 \ 5)|| \cdot ||(-1 \ 4 \ 3)||}$$
$$= \frac{3(-1) + 4(4) + 5(3)}{\sqrt{3^2 + 4^2 + 5^2} \cdot \sqrt{(-1)^2 + 4^2 + 3^2}} = \frac{28}{\sqrt{50} \cdot \sqrt{26}}$$
$$= \frac{28}{10\sqrt{13}} = \frac{14\sqrt{13}}{65}$$

Team Round

Name	
School	
	400
1	

$$b = \frac{-a}{2} + \frac{1}{2}$$

2._____

2. If f(x) = 5x - 2, g(x) = ax + b, and f(g(x)) = g(f(x)), find an expression for b in terms of a.

1. If $a \ddagger b = a^b + b$, determine the value of $(4 \ddagger 5) - (5 \ddagger 4)$.

 $(4^5+5) - (5^4+4)$

= (1024 + 5) - (625 + 4)

= 1029 - 629 = 400

$$5(ax + b) - 2 = a(5x - 2) + b$$

$$5ax + 5b - 2 = 5ax - 2a + b$$

$$4b = -2a + 2$$

$$b = \frac{-a}{2} + \frac{1}{2}$$

768

3._____

3. How many cubes, each 3 inches on an edge, are needed to make a volume equal to that of a rectangular solid whose dimensions are 2 feet by 2 feet by 3 feet?

> $24 \times 24 \times 36 = 20,736$ $3 \times 3 \times 3 = 27$ $20,736 \div 27 = 768$

WMML	Name	
Meet #4	Cabaal	
Feb. 1, 2022	School	$\frac{20}{41}$
4. Let x be an integer such that $-20 \le x \le 20$. If x is chosen at random, determine the probability that it will be a solution to both $ x - 5 \ge 5$ and $x^2 \le 196$.	4	41
There are 41 integers on the interval $-20 \le x \le 20$.		
Since $x^2 \le 196$, we have that $-14 \le x \le 14$.		

-8 + 3i

5.____

5. If
$$F(x) = 3x^3 - 2x^2 + x - 3$$
, find $F(1 + i)$.

$$F(1 + i) = 3(1 + i)^3 - 2(1 + i)^2 + (1 + i) - 3$$

$$= 3(-2 + 2i) - 2(2i) + (1 + i) - 3$$

$$= (-6 + 6i) - 4i + (1 + i) - 3 = -8 + 3i$$

For $|x-5| \ge 5$, we have that $x-5 \ge 5$ ($x \ge 10$) or x - 5 < -5 (x < 0).

Both are true when x = -14, -13, -12, -11, -10, -9, -8, -7, -6, -5,

-4, -3, -2, -1, 0, 10, 11, 12, 13, and 14

a = -2, b = 36._____

6. If $\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \cdot \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ 12 & 6 \end{bmatrix}$, determine *a* and *b*. 2a + 4b = 8 -4a - 8b = -166a + 8b = 126a + 8b = 12 $2a = -4 \rightarrow a = -2$ $2(-2) + 4b = 8 \rightarrow b = 3$