WMML

Arithmetic and Number Theory
\$202.10

1) How much, in dollars, is $2,021,000 \%$ of a penny?

$$
\frac{2,021,000}{100}(0.01)=\frac{2,021,000}{10,000}=202.1
$$

2) Starting with 1, at most how many consecutive positive integers can be added before the sum exceeds 2021?
$\frac{n(n+1)}{2} \leq 2021 \rightarrow n(n+1) \leq 4042$
$63 \times 64=4,032$ and $64 \times 65=4160$
3) Find two numbers whose product is $1,000,000$ such that neither number contains a zero.
$1,000,000=10^{6}=2^{6} \cdot 5^{6}$
Neither factor can contain $2 \cdot 5$, so we must have $2^{6}=64$ and $5^{6}=15,625$ as the two factors.

63

64 and 15,625
3. \qquad

1. \qquad
2. \qquad
\qquad

School \qquad

Algebra 1

1) Solve the following equation for x :

$$
|4 x-5|=2 x+1
$$

$4 x-5=2 x+1 \quad \rightarrow \quad x=3$
$-(4 x-5)=2 x+1 \quad \rightarrow \quad x=\frac{2}{3}$

$$
x=3, \quad x=\frac{2}{3}
$$

1. \qquad

$$
1,-1
$$

2. \qquad

100
3. \qquad
3) Bryan has a part-time job delivering packages. He is paid a flat rate of $\$ 9.50$ per hour. Caleb works at a competitor that pays its employees $\$ 2$ per hour plus $\$ 3$ per delivery. How many deliveries would Caleb have to make in 40 hours to earn the same pay as Bryan for a a 40 hour work week?
$9.5(40)=2(40)+3 x$
$300=3 x$
$x=100$

WMML
Meet \#1
Nov. 9, 2021

Geometry

1) How many pipes with inside diameter 1 inch are needed to carry the same amount of water as one pipe with inside diameter 10 inches?
$A_{1}=\pi\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{4}\right) \pi$
$A_{2}=\pi(5)^{2}=25 \pi$
$25 \pi \div\left(\frac{1}{4}\right) \pi=100$
2) The length of each side of a triangle is increased by $2,000 \%$. By what percent does the area of the triangle increase?
$A_{1}=\frac{1}{2} b h$
$A_{2}=\frac{1}{2}(20 b)(20 h)=400\left(\frac{1}{2} b h\right)$
There is a $40,000 \%$ increase in the area. $A=2 \sqrt{3} P$, then what is the side length of the triangle?

Side length $=\frac{P}{3}$.
$A=\frac{1}{2}\left(\frac{P}{3}\right)\left(\frac{\sqrt{3} P}{6}\right)=2 \sqrt{3} P$
$P^{2}=72 P \quad \rightarrow \quad P(P-72)=0 \quad \rightarrow \quad P=72$
Side length $=\frac{72}{3}=24$

40,000\%
3. \qquad

1. \qquad
2. \qquad -

WMML
Meet \#1
Nov. 9, 2021

Algebra 2

64

1) The vertex of the parabola $y=x^{2}-16 x+k$ is on the x-axis.
\qquad

School \qquad

What is the value of k ?
$\frac{-16}{2}=-8$
$y=(x-8)^{2}=x^{2}-16 x+64$
\$2,700
2) Years ago Jack purchased shares of Tesla for a total of $\$ 3,000$. The value of his investment grew by 350% and he wants to give the shares to his 4 children in the ratio of 3:3:2:2. How much money is the smallest gift worth?
$3,000(4.5)=13,500$
$3 x+3 x+2 x+2 x=13,500$
$x=\frac{13,500}{10}=1,350$
3) If $(x-3 y)^{3}(x+3 y)^{3}$ is written as a polynomial in x and y, what
2. \qquad

3. \qquad is the sum of its coefficients?

$$
\begin{aligned}
& (x-3 y)^{3}(x+3 y)^{3}=\left(x^{2}-9 y^{2}\right)^{3} \\
& \left(x^{2}-9 y^{2}\right)^{3}=1 x^{6}+3\left(x^{4}\right)\left(-9 y^{2}\right)+3\left(x^{2}\right)\left(-9 y^{2}\right)^{2}+1\left(-9 y^{2}\right)^{3} \\
& =x^{6}-27 x^{4} y^{2}+243 x^{2} y^{4}-729 y^{3} \\
& 1-27+243-729=-512
\end{aligned}
$$

WMML
Meet \#1
Nov. 9, 2021

Trigonometry and Complex Numbers
π

1) Solve for all x where $0 \leq x<2 \pi$.

$$
\sin (x-\pi)=\cot \left(\frac{\pi}{6}\right)-2 \cos \left(\frac{\pi}{6}\right)
$$

$\sin (x-\pi)=\sqrt{3}-2\left(\frac{\sqrt{3}}{2}\right)=0$
$x=\pi$
2) Simplify $\left(i^{2021}+i^{2022}+i^{2023}+i^{2024}\right)^{2021}$.
$\left(i^{1}+i^{2}+i^{3}+i^{4}\right)^{2021}=(i-1-i+1)^{2021}=0^{2021}=0$
3) Find all possible values of $\angle P Q R$ if $P Q=12, Q R=4 \sqrt{3}$, and the area of $\triangle P Q R$ is $12 \sqrt{6}$.

$$
\begin{aligned}
& A=\frac{1}{2} P Q \cdot Q R \sin (\angle P Q R)=\frac{1}{2} \cdot 12 \cdot 4 \sqrt{3} \sin (\angle P Q R) \\
& =24 \sqrt{3} \sin (\angle P Q R) \\
& \sin (\angle P Q R)=\frac{12 \sqrt{6}}{24 \sqrt{3}}=\frac{\sqrt{2}}{2} \\
& \sin (\angle P Q R)=45^{\circ} \text { or } 135^{\circ}
\end{aligned}
$$

3.

45° or 135°
\qquad

0
2.

1. \qquad
\qquad

WMML
Meet \#1
Nov. 9, 2021

Precalculus

1) What is the slope of the line that goes through the point $(-3,2)$ and the intersection of the lines $y=2 x+1$ and $3 x+y=11$?
$3 x+(2 x+1)=11 \quad \rightarrow \quad x=2$
$y=2(2)+1=5$
$m=\frac{5-2}{2-(-3)}=\frac{3}{5}$
2) The natural numbers from 1 to 2021 are placed into a bag. If one number is drawn randomly from the bag, what is the probability that it is not a multiple of 2 or 3 ?

Multiples of 2: $\frac{2021}{2}=1010 r 1$
Multiples of 3: $\frac{2021}{3}=673 r 2$
Multiples of 2 and $3: \frac{2021}{6}=336 r 5$
$1-\frac{1010+673-336}{2021}=\frac{674}{2021}$
3) Find the value of k such that the graphs of
$(x+2)^{2}+(y-5)^{2}=k$ and $(x-4)^{2}+(y-1)^{2}=k$ have only one point of intersection.
$\sqrt{(4+2)^{2}+(1-5)^{2}}=\sqrt{52}=2 \sqrt{13}$
The radius if each circle must be $r=\frac{2 \sqrt{13}}{2}=\sqrt{13}$.
$k=r^{2}=13$.
\qquad

School \qquad $\frac{3}{5}$

1. \qquad $\frac{674}{2021}$
2. \qquad
3. \qquad

WMML

Meet \#1
Nov. 9, 2021

Team Round

1. Starting from right, how many zeros are there before the first non-zero digit after expanding the factorial expression 2021!?

We need to find the number of 5's in the prime factorization of 2021!
$\frac{2021}{5}=404 r 1, \frac{2021}{25}=80 r 21, \frac{2021}{125}=16 r 21$
$\frac{2021}{625}=3 r 146 \rightarrow 404+80+16+3=503$
2. How many numbers x in the set $\{1,2,3, \ldots, 2021\}$ are there such that $x^{2}+x^{3}$ equals the square of an integer?
$x^{2}+x^{3}=x^{2}(1+x)$
Since x^{2} is a square, we need $1+x$ to also be a square. The first such value is when $x=3$ since $3+1=4=2^{2}$. The largest such value is $x=1935$ since $1,935+1=1,936=44^{2}$. Therefore there are 43 such values of x.
3. Given the regular decagon $A B C D E F G H I J$, find the measure of $\angle H I A$.
$m \angle H I J=\frac{8(180)}{10}=144$
$m \angle J I A=\frac{180-144}{2}=18$
$m \angle H I A=144-18=126$

43
\qquad

School \qquad

1. \qquad
2. \qquad

126°

3. \qquad

WMML
Meet \#1
Nov. 9, 2021

2021
4. Three whole numbers, when added together two at a time, have sums of 1202,2223 , and 3021 . Determine the value of the largest of the original three numbers.
$x+y=1202 \quad y=1202-x \quad 2 z=4042$
$x+z=2223 \quad 1202-x+z=3021 \quad z=2021$
$y+z=3021 \quad-x+z=1819$
5. If $(\sin (x)-\cos (x))^{2}=a^{2}$, express $\frac{\sin (2 x)}{1-a}$ in simplest form in terms of a.
$\sin ^{2}(x)-2 \sin (x) \cos (x)+\cos ^{2}(x)=a^{2}$
$1-\sin (2 x)=a^{2} \quad \rightarrow \quad \sin (2 x)=1-a^{2}$
$\frac{\sin (2 x)}{1-a}=\frac{1-a^{2}}{1-a}=1+a$
6. Let $\mathbf{v}=\binom{4 \sqrt{3}}{4}$ and $\mathbf{w}=\binom{1}{\sqrt{3}}$ be vectors. Find the

$$
\binom{2 \sqrt{3}}{6}
$$

6. \qquad
projection of \mathbf{v} onto \mathbf{w}.
$\operatorname{proj}_{w} v=\frac{v \cdot w}{\|w\|^{2}} w=\frac{(4 \sqrt{3})(1)+(4)(\sqrt{3})}{2^{2}}\binom{1}{\sqrt{3}}=\binom{2 \sqrt{3}}{6}$
7. \qquad
School \qquad

路

$$
\text { 5. } \begin{array}{r}
1+a \\
\hline
\end{array}
$$

5.
